Substitution Tilings

I’ve been working on adding aperiodic grids to Sylves.

Aperiodic tilings are made tilings are made of a fixed set of tiles, rotated and translated to fully cover the plane.But they are not periodic – there’s no way to rotate/translate the whole grid onto itself.

This makes them almost hypnotic in their balance of regularity and chaos. A classic example is the penrose tiling.

Continue reading

Editable WFC

When I spoke about autotiling, I briefly touched on how it’s possible to use Wave Function Collapse (or other constraint based generators) as a form of autotiling, i.e. user-directed editing of tilemaps.

I’ve usually referred to this technique as “editable WFC“. It’s a combination of autotiling and WFC, and contains the best of both:

  • Being an autotiler, it allows users to easily and interactively make changes to an existing level.
  • Being constraint based, it automatically ensures that those changes are consistent with the predefined rules of the constraints, potentially making further changes to the level to make it fit

This is different from most other autotilers, which either require manual configuration of patterns used to enforce good behaviour, hidden layers, or come with more stringent requirements on what tiles are available.

Continue reading

Advanced Table Constraints

Previously we considered the Arc Consistency 3 and Arc Consistency 4 algorithms, which are an essential component of many constraint solvers. I’ve been using AC-4 myself for some time, and I naturally got curious as to what other improvements can be made.

Diving it, I discovered there is a huge amount of papers with new innovations are refinements on these two fundamental techniques. I’m going to attempt to summarize them there, and maybe later experiment with them in my own software, but I’m afraid this article is going to be pretty niche.

Continue reading

Compressed Sparse Fibers Explained

I was browsing the Apache Arrow docs and spotted a term unfamiliar to me. Intrguied, I discovered that Compressed Sparse Fibers are a new technique for representing sparse tensors in memory. After reading up a bit, I thought I’d share with you what I’ve learnt. The technique is so new (well, 2015..) it is not mentioned on Wikipedia, and I found virtually nothing elsewhere. There’s a very limited number of ways to handle sparse data, so it’s always interesting to see a new one.

Don’t worry, I’d also never heard of a sparse tensor before, so I’m going to explain things right from the beginning, assuming you have a basic CS background, and don’t mind me going a little quickly.

Continue reading

Random Paths via Chiseling

I went over a previous project to randomly generate paths between points and came up with a much more efficient and versitile algorithm.

(EDIT: In 2022 I found an even better way.)

The algorithm is simple. Start with the entire area covered in path tiles, then and remove tiles one by one until only a thin path remains. When removing tiles, you cannot remove any tile that will cause the ends of the path to become disconnected. These are called articulation points (or cut-vertices). I use a fast algorithm based on DFS to find the articulation points. I had to modify the algorithm slightly so it only cares about articulation points that separate the ends, rather than anything which cuts the area in two. After identifying articulation points it’s just a matter of picking a random tile from the remaining points, and repeating. When there are no more removable tiles, you are done. Or you can stop early, to give a bit of a different feel.

I call it “chiseling” as you are carving the path out of a much larger space, piece by piece.

See on github .
Continue reading